

UNIDAD:			DIVISIÓN		
IZTAPALAPA			CIENCIAS BÁSICAS E INGENIERÍA		
NIVEL:		EN			
LICENCIATURA			QUÍMICA		
CLAVE:	UNIDA	D DE ENSEÍ	ÑANZA - APRENDIZAJE:	TRIM:	
2141146	ESTRU	CTURA ELE	ECTRÓNICA	VI-XII	
HORAS				CRÉDITOS:	
TEORÍA: 4	SERIACIÓN		9		
HORAS	214108	3		OPT/OBL:	
PRÁCTICA: 1				OPT.	

OBJETIVO(S):

GENERAL

• Que al final del curso el alumno sea capaz de comprender y aplicar los conceptos y métodos relacionados con el estudio de la estructura electrónica de átomos, moléculas y materia condensada.

ESPECÍFICOS

Que al final del curso el alumno sea capaz de:

- Describir las características de los métodos más utilizados en cálculos de estructura electrónica basados en la función de onda.
- Describir las características de los métodos más utilizados en cálculos de estructura electrónica basados en la densidad electrónica.
- Aplicar los conceptos y métodos relacionados con el cálculo de estructura electrónica para la determinación e interpretación de propiedades de átomos, moléculas y materia condensada.

CONTENIDO SINTÉTICO:

- 1. Métodos para el cálculo de estructura electrónica basados en la función de onda.
- 2. Métodos para el cálculo de estructura electrónica basados en la densidad electrónica.
- 3. Aplicación de los métodos relacionados con el cálculo de estructura electrónica a la determinación de propiedades de átomos, moléculas y materia condensada.

NOMBRE DEL PLAN					
	2/2				
CLAVE 2141146	UNIDAD DE DE ENSEÑANZA-APRENDIZAJE ESTRUCTURA ELECTRÓNICA				

MODALIDADES DE CONDUCCIÓN DEL PROCESO DE ENSEÑANZA-APRENDIZAJE:

- Clase de teoría en forma de Conferencia magistral.
- Clase en forma de taller en salas de cómputo.
- Seminario impartido por los alumnos (individual o por equipo).
 Se recomienda que las sesiones de taller sean organizadas con base en la resolución de problemas utilizando paquetes computacionales para el cálculo de estructura electrónica de átomos, moléculas y sólidos.

MODALIDADES DE EVALUACIÓN:

Evaluación Global:

- Pruebas abiertas parciales (al menos dos procurando que sean de carácter acumulativo o integrador).
- Reporte escrito y presentación oral (al menos uno de cada uno).
- Pruebas de ejecución (taller de cómputo).
- Tareas periódicas (al menos tres).

La ponderación de todas estas evaluaciones quedará a juicio del profesor.

Evaluación de Recuperación:

 El curso podrá acreditarse mediante una evaluación de recuperación que podrá ser global o complementaria a juicio del profesor.

BIBLIOGRAFÍA NECESARIA O RECOMENDABLE:

- 1. Cramer, C. J., Essentials of Computational Chemistry, 2ª Edición, Wiley, 2004.
- 2. McWeeny, R., Methods of Molecular Quantum Mechanics, 2a. Edición, Academic Press, 1992.
- 3. Koch, W. y Holthausen, M. C., *A Chemist's Guide to Density Functional Theory*, 2^a Edición, Wiley-VCH, 2001.
- 4. Levine, I. N., Quantum Chemistry, 6a Edición, Prentice Hall, 2008.
- 5. Szabo, A. y Ostlund, N.S., *Modern Quantum Chemistry*, Dover, 1996.
- 6. Sholl, D. y Steckel, J. A., Density Functional Theory: A Practical Introduction, Wiley-Interscience, 2009.
- 7. Trindle, C. y Shillady, D., *Electronic Structure Modeling: Connections Between Theory and Software*, CRC Press, 2008.
- 8. Artículos de investigación.