

1/3	
-----	--

UNIDAD:		DIVISIÓN	
IZTAF	PALAPA	CIENCIAS BÁSICAS E INGENIERÍA	
NIVEL:	EN		
LICENCIATU	RA QUÍMI	CA	
CLAVE:	UNIDAD DE E	NSEÑANZA - APRENDIZAJE:	TRIM:
2141122	TÉCNICAS EX	PERIMENTALES DE FISICOQUÍMICA	VII-XII
HORAS	AVANZADA		CRÉDITOS:
TEORÍA: 2	SERIACIÓN		9
HORAS	2141085		OPT/OBL:
PRÁCTICA: 5			OPT.

OBJETIVO(S):

GENERAL

 Que al final del curso el alumno sea capaz de tener una visión general sobre diferentes técnicas físicas aplicadas a la caracterización de sólidos.

ESPECÍFICOS

Que al final del curso el alumno sea capaz de:

- Aplicar la ecuación de Scherrer.
- Utilizar la base de datos JCPDS para la identificación de las fases cristalinas.
- Conocer las diferencias entre las técnicas de microscopia electrónica de barrido (SEM) y la microscopia electrónica de transmisión (TEM).
- Determinar la distribución de tamaño de partícula a partir de microfotografías.
- Aplicar los conceptos básicos de las espectroscopias Infrarroja (IR) y Ultravioleta-Visible (UV) en la caracterización de sólidos.
- Aplicar los conceptos básicos de adsorción para la caracterización de una superficie por medio de espectroscopia IR y una molécula sonda.
- Determinar la energía de brecha (gap) de un semiconductor utilizando su espectro UV.
- Conocer los diferentes tipos de corrosión y las técnicas para producirlos.
- Identificar los tipos de corrosión por SEM, microscopia por efecto túnel (STM) y microscopia de fuerza atómica (AFM).

CONTENIDO SINTÉTICO:

- 1. TEM y XRD y su aplicación a la medida del tamaño de partícula
- 2. Utilizar moléculas sonda y técnicas espectroscópicas (FT-IR, UV) para caracterizar una superficie
- 3. Energía de brecha (gap) en semiconductores y su medida por UV
- 4. Corrosión de metales seguida por STM, AFM, SEM

NOMBRE DEL F LICENCIATURA		2/3
CLAVE 2141122	UNIDAD DE DE ENSEÑANZA-APRENDIZAJE TÉCNICAS EXPERIMENTALES DE FISICOQUÍMICA AVANZADA	

MODALIDADES DE CONDUCCIÓN DEL PROCESO DE ENSEÑANZA-APRENDIZAJE:

- Clase de teoría en forma de conferencia magistral.
- Prácticas de laboratorio en las que el alumno aplicará las técnicas para obtener parámetros fisicoquímicos de los sólidos.
- Para la realización de los experimentos utilizando las técnicas físicas disponibles en los laboratorios de investigación, el profesor responsable del curso se encargará de concertar las citas para la realización de éstos.
- Seminario impartido por los alumnos (individual o por equipos) al final de trimestre.

MODALIDADES DE EVALUACIÓN:

Evaluación Global:

Actividad en el laboratorio: bitácora y reporte
Exposición oral y reporte escrito por equipo
Evaluación terminal
TOTAL:
100%

Evaluación de Recuperación:

• El curso no puede ser aprobado mediante la aplicación de una evaluación de recuperación.

NOMBRE DEL F LICENCIATURA		3/3
CLAVE 2141122	UNIDAD DE DE ENSEÑANZA-APRENDIZAJE TÉCNICAS EXPERIMENTALES DE FISICOQUÍMICA AVANZADA	

BIBLIOGRAFÍA NECESARIA O RECOMENDABLE:

- 1. Bard, A.J. y Faulkner, L.R., *Electrochemical Methods. Fundamentals and Applications*, 2^a. Ed. John Wiley & Sons, 2001.
- 2. Imelik, B. y Vedrine, J.C., Plenun, Catalysis Characterization. Press. N.Y. 1994.
- 3. Leng, Y., Materials Characterization. Introduction to Microscopic and Spectroscopic Methods, Wiley, 2008.
- 4. Tyagi, A.K., Roy, Maynak, Kulshreshtha, S.K. y Benerjee, S., *Advanced Techniques for Materials Characterization*. Trans. Tech. Publications. 2009.
- 5. Zhang, S., Li, L., y Kumar, A., *Materials Characterization Techniques*. CRC Press; 1^a edición, 2008.