UNIVERSIDAD AUTÓNOMA METROPOLITANA

Examen Global Departamental Transformaciones Químicas. Trimestre 18-I

Nombre:	e: Matrícula:					
Instrucciones: No está permitido el uso del teléfono celular ni de reproductores de música o video. Sólo podrán abandonar el salón una vez que hayan entregado el examen.						
1 En cada una de las siguientes afirmaciones indica si es verdadera (${f V}$) o fals	sa (F):					
(${\bf a}$) El litio, Li, tiene dos isótopos estables $^6{\rm Li}$ y $^7{\rm Li}.$ Si la masa atómica del Li	es					
6.94 ma, entonces el isótopo más abundante es el ⁷ Li.		()			
(${f b}$) En un mol de sacarosa, $C_{12}H_{22}O_{11}$, hay 12.0 g de carbono, C .		()			
($\bf c$) En 18.0 g de agua, H_2O , hay 3.01×10^{23} átomos de hidrógeno, $\bf H$.		()			
(\boldsymbol{d}) Considerando la siguiente reacción en equilibrio $\ 3\ O_2(g)\ \leftrightarrows\ 2\ O_3(g),$ al	aumentar					
la presión total se desplaza hacia la formación de ozono O ₃ .		()			
(e) Una solución acuosa 0.10 M de NH ₃ y 0.10 M de NH ₄ Cl es una solución amortiguadora.		()			
		(2.	.0 puntos)			
2 El aluminio, Al, reacciona con el ácido clorhídrico, HCl, de acuerdo a la sig	uiente ecuación química	1 :				
$2 \text{ Al (s)} + 6 \text{ HCl (ac)} \longrightarrow 2 \text{ AlCl}_3(\text{ac)} +$	$3 H_2(g)$					
Si se hacen reaccionar 4.05 g de aluminio con 600.0 mL de HCl 0.50 M,						
(a) ¿Qué masa del reactivo en exceso queda sin reaccionar?						
(b) ¿Qué masa de cloruro de aluminio, AlCl ₃ , se forma?						
(${\bf c}$) Si se recoge el hidrógeno gaseoso, $H_2(g)$, en un recipiente en condicione	es normales (1 atm, 273	3 K),	¿qué volumen			
ocupará dicho gas?		(1.	.5 puntos)			
3 La reacción de formación del hidróxido de magnesio, Mg(OH) ₂ (s), es:						
$Mg(s) + O_2(g) + H_2(g) \longrightarrow Mg(Ol$	$(4)_2(s)$					
Calcula la entalpía estándar de formación de este hidróxido a partir de las siguid	entes ecuaciones termog	Įuími	icas:			
$2 \text{ Mg (s)} + O_2(g) \longrightarrow 2 \text{ MgO (s)}$ ΔF	$I^{\circ} = -1203.6 \text{ kJ}$					
$Mg(OH)_2(s) \longrightarrow MgO(s) + H_2O(\ell)$	$\Delta H^{\circ} = 37.1 \text{ kJ}$					
$2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(\ell)$ ΔI	$H^{\circ} = -571.7 \text{ kJ}$					
		(2.	.0 puntos)			

4.- El bicarbonato de sodio, NaHCO₃, se descompone de acuerdo a la siguiente reacción:

$$2 \text{ NaHCO}_3(s) = \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$$

A 100 °C la constante de equilibrio, $K_c = 2.5 \times 10^{-14}$. En un experimento a 100 °C se mezclaron 2.5 mol de NaHCO₃, 0.15 mol de Na₂CO₃, 2.5×10^{-2} mol de CO₂ y 4.0×10^{-2} mol de H₂O, en un recipiente de 2.0 L.

- (a) Determina si la mezcla de reacción se encuentra en equilibrio.
- (b) Si el sistema no se encuentra en equilibrio, indica en qué sentido se llevará a cabo la reacción química.

(1.0 puntos)

5.- La efedrina, C₁₀H₁₅ON, se usa en rocíos nasales como descongestionante. Este compuesto es una base orgánica débil:

$$C_{10}H_{15}ON(ac) + H_2O(\ell) = C_{10}H_{15}ONH^+(ac) + OH^-(ac)$$

Una disolución 0.035 M de efedrina tiene un pH de 11.33. Calcula,

- (a) Las concentraciones de equilibrio de C₁₀H₁₅ON, C₁₀H₁₅ONH⁺ y OH⁻.
- (\mathbf{b}) La constante K_b de la efedrina.

(**2.0** puntos)

6.- En la reacción redox balanceada siguiente: $4 \text{ Cu}(s) + 10 \text{ HNO}_3(ac) \longrightarrow 4 \text{ Cu}(\text{NO}_3)_2(ac) + \text{N}_2\text{O}(g) + 5 \text{ H}_2\text{O}(\ell)$ Las semireacciones en medio ácido son:

Semireacción I:
$$Cu(s) + 2 HNO_3(ac) \longrightarrow Cu(NO_3)_2(ac) + ? H^+(ac) + 2 e^-$$

Semireacción II:
$$\mathbf{e}^- + 8 \, \mathrm{H}^+(\mathrm{ac}) + 2 \, \mathrm{HNO}_3(\mathrm{ac}) \longrightarrow \mathrm{N}_2\mathrm{O}(\mathrm{g}) + 5 \, \mathrm{H}_2\mathrm{O}(\ell)$$

Indica en cada una de las siguientes afirmaciones si es verdadera (V) o falsa (F):

- (a) El HNO₃ en la semireacción II es el agente oxidante.
- (**b**) La cantidad de protones que balancea la *semireacción I* son 8.
- (c) La semireacción I es un proceso de reducción.
- (d) La cantidad de electrones que balancea la *semireacción II* son 8.
- (e) El número de oxidación del N en el N_2O es 1+. (1.5 puntos)

$$R = 0.082 \; \frac{L \; atm}{mol \; K} \qquad \qquad N_A = 6.02 \times 10^{23} \; \frac{particulas}{mol} \label{eq:NA}$$

Elemento	С	Н	О	Al	Cl
MM (g/mol)	12.0	1.0	16.0	27.0	35.5