

## Primer Examen Departamental Estructura de la Materia. Trimestre 18-0

| Nombre:                                                                                                                                                                                                                                                                                                  | Matrícula:                                                      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| <ul> <li>Instrucciones:</li> <li>No está permitido el uso del teléfono celular ni de reproductores de música o video.</li> <li>Sólo podrás abandonar el salón una vez que hayas entregado el examen.</li> <li>Incluye todos los procedimientos que utilices para responder si así se pidiera.</li> </ul> |                                                                 |  |  |  |
| 1 Un fotón de frecuencia v puede producir el efecto fotoeléctrico al in                                                                                                                                                                                                                                  | ncidir con la superficie tanto del metal X como del             |  |  |  |
| metal Y. Si la energía cinética del electrón expulsado en el metal X tien                                                                                                                                                                                                                                | e un valor $h\nu/2$ y la del metal Y es de $h\nu/3$ ,           |  |  |  |
| (i) ¿Cuál de las siguientes afirmaciones es correcta? Justifica tu respu                                                                                                                                                                                                                                 | eesta (0.5 puntos)                                              |  |  |  |
| ( a ) La energía de amarre o ligazón de X es mayor que la energía de                                                                                                                                                                                                                                     | amarre de Y.                                                    |  |  |  |
| ( ${f b}$ ) La energía de amarre o ligazón de Y es mayor que la energía de                                                                                                                                                                                                                               | e amarre de X.                                                  |  |  |  |
| ( c ) La energía de amarre de X es igual a la energía de amarre de Y.                                                                                                                                                                                                                                    |                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                          |                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                          |                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                          |                                                                 |  |  |  |
| ( $ii$ ) Si $\lambda_X$ es la longitud de onda de los electrones expulsados de met                                                                                                                                                                                                                       | tal X v λ <sub>v</sub> es la longitud de onda de los electrones |  |  |  |
| expulsados de metal Y, ¿cuál aseveración es correcta? Justifica tu resp                                                                                                                                                                                                                                  |                                                                 |  |  |  |
| (a) $\lambda_{\rm X} > \lambda_{\rm Y}$                                                                                                                                                                                                                                                                  | (ote passos)                                                    |  |  |  |
| (b) $\lambda_{\rm X} < \lambda_{\rm Y}$                                                                                                                                                                                                                                                                  |                                                                 |  |  |  |
| (c) $\lambda_{\rm X} = \lambda_{\rm Y}$                                                                                                                                                                                                                                                                  |                                                                 |  |  |  |
| 2 Se requiere un fotón con longitud de onda $\lambda$ para provocar una tran una órbita con $n_i=1$ a otra órbita con $n_f=2$ .                                                                                                                                                                          | sición del electrón en el átomo de hidrógeno desde              |  |  |  |
| ( ${f i}$ ) Indica con una $X$ en el paréntesis si es una emisión ( ${\ \ }$ ) o una absol                                                                                                                                                                                                               | orción ( ). ( <b>0.5 puntos</b> )                               |  |  |  |
| ( ii ) Cual de las siguientes afirmaciones es correcta:                                                                                                                                                                                                                                                  |                                                                 |  |  |  |
| ( a ) El átomo inicia en un estado excitado y hace una transición hac                                                                                                                                                                                                                                    | ia otro estado excitado.                                        |  |  |  |
| ( <b>b</b> ) El átomo inicia en un estado excitado y hace una transición hac                                                                                                                                                                                                                             | ia el estado basal.                                             |  |  |  |
| ( c ) El átomo inicia en el estado basal y hace una transición hacia un                                                                                                                                                                                                                                  | ı estado excitado.                                              |  |  |  |
| ( d ) Se ioniza el átomo de hidrógeno.                                                                                                                                                                                                                                                                   | ( <b>0.5 puntos</b> )                                           |  |  |  |

| que se requiere ene     | rgía de <b>Y</b> kJ/mol para la transició                       | on de una órb   | oita con número cuántico n <sub>b</sub> hac | ía otra con el mismo  |
|-------------------------|-----------------------------------------------------------------|-----------------|---------------------------------------------|-----------------------|
| número cuántico $n_c$ . | ¿Cuánta energía en <b>J/mol</b> se requie                       | ere para la tra | nsición desde el estado basal hac           | ia n <sub>b</sub> ?   |
| (a)(X+Y)/1000           |                                                                 |                 |                                             |                       |
| ( <b>b</b> ) (X-Y)/1000 |                                                                 |                 |                                             |                       |
| ( <b>c</b> ) 1000*(X+Y) | )                                                               |                 |                                             |                       |
| ( <b>d</b> ) 1000*(X-Y) |                                                                 |                 |                                             | ( <b>1.0 puntos</b> ) |
|                         |                                                                 |                 |                                             |                       |
|                         |                                                                 |                 |                                             |                       |
|                         |                                                                 |                 |                                             |                       |
|                         |                                                                 |                 |                                             |                       |
|                         |                                                                 |                 |                                             |                       |
|                         |                                                                 |                 |                                             |                       |
|                         |                                                                 |                 |                                             |                       |
| 3 Relaciona los nú      | meros cuánticos (n, l, m <sub>l</sub> , m <sub>s</sub> ) con la |                 |                                             | ( <b>1.0 puntos</b> ) |
|                         | (a) (3, 0, 0, 1/2)                                              |                 | m <sub>s</sub> incorrecta                   |                       |
|                         | <b>(b)</b> (2,1,-1,-1/2)                                        |                 | orbital 4d                                  |                       |
|                         | (c) (2,2,-1,1/2)                                                |                 | orbital 2p                                  |                       |
|                         | ( <b>d</b> ) (4,2,-2,-1/2)                                      |                 | orbital 3s                                  |                       |
|                         | (e)(3,1,1,1)                                                    | ( ) 1           | incorrecta                                  |                       |
| 4 Los alamantos A       | y B tienen las siguientes configura                             | oionas alaatm   | ónicos                                      | ( <b>1.0</b> puntos ) |
|                         | y B = $[Ar]4s^23d^{10}4p^65s^1$ . Contesta:                     |                 | onicas.                                     | (1.0 puntos)          |
| _                       | al o no metal:                                                  | •               |                                             |                       |
|                         | o tendrá la mayor primer afinidad el                            | lactrónica?     |                                             |                       |
|                         | tendrá el mayor radio atómico?                                  |                 | ·                                           |                       |
|                         | o tendrá la menor primera energía d                             |                 |                                             |                       |
| (u) ¿Cuai ciemento      | tendra la menor primera energia di                              | e ionizacion:   | <u> </u>                                    |                       |
| 5 Enseguida se mu       | nestran las configuraciones electrón                            | icas de aloun   | os átomos excitados. Identifica é           | stos átomos v escribe |
| -                       | electrónicas en el estado fundamen                              | _               | os acomos enercados. Identifica e           | ( <b>2.0</b> puntos ) |
| sus configuraciones     | Configuración electrónica                                       |                 | Configuración electrónica                   | 7                     |
|                         | en el <i>estado excitado</i> .                                  | Átomo           | en el <i>estado basal</i> .                 |                       |
|                         | 1s <sup>1</sup> 2s <sup>1</sup>                                 |                 | ch ch estato basat.                         |                       |
|                         |                                                                 |                 |                                             | _                     |
|                         | $1s^22s^22p^23d^1$                                              |                 |                                             |                       |
|                         | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 4s <sup>1</sup> |                 |                                             |                       |
|                         | $[Ar]4s^{1}3d^{10}4p^{4}$                                       |                 |                                             |                       |
|                         | $[Ne]3s^23p^43d^1$                                              |                 |                                             |                       |

(iii) Se requiere energía de X kJ/mol para la transición desde el estado basal hacia otra con número cuántico n<sub>c</sub> mientras

| <b>6</b> Consulta la tabla periódica y nombra:                                                          | ( <b>1.0</b> puntos ) |
|---------------------------------------------------------------------------------------------------------|-----------------------|
| ( a ) El elemento halógeno del cuarto período:                                                          |                       |
| ( <b>b</b> ) El metal del grupo 2A (2) más pequeño:                                                     |                       |
| ( ${\bf c}$ ) Un elemento que tenga un número atómico menor a 21 y que sea semejante al estroncio: $\_$ | ·                     |
| ( d ) El elemento con mayor afinidad electrónica en el grupo 6A (16):                                   |                       |
| ( e ) El elemento con menor energía de ionización en el grupo 2A (2):                                   |                       |

7.- Para cada par de los siguientes compuestos iónicos indica cuál de ellos tiene la energía reticular más alta. Y escribe cuál de los cuatro iones, en cada comparación, tiene mayor y menor radio iónico.(2.0 puntos)

| Compuestos iónico                     | Mayor energía reticular | Mayor radio iónico | Menor radio iónico |
|---------------------------------------|-------------------------|--------------------|--------------------|
| Compuestos ionico                     |                         | (de los 4 iones)   | (de los 4 iones)   |
| KCl o MgO                             |                         |                    |                    |
| LiF o LiBr                            |                         |                    |                    |
| Mg <sub>3</sub> N <sub>2</sub> o NaCl |                         |                    |                    |