UNIVERSIDAD AUTÓNOMA METROPOLITANA

Examen Global Departamental Transformaciones Químicas. Trimestre 17-P

$ \begin{array}{ c c c c c }\hline Símbolo & B & \frac{54}{26}Fe^{2+} & P\\\hline Protones & 5 & & & \\\hline Neutrones & 6 & & 16\\\hline Electrones & 5 & & 18\\\hline Carga Neta & & & -3\\\hline \end{array} $	bre:	Matrícula:					
Protones 5 Neutrones 6 16 16 Electrones 5 18 Carga Neta -3 -3 2 La malaquita es el principal mineral del cobre su color es verde brillante y su fórmula es C (a) Encuentra el porcentaje en masa de cobre en la malaquita. (b) ¿Cuántos gramos de cobre pueden obtenerse a partir de 500.0 gramos de malaquita? 3 Reaccionan 40.0 ml de una solución de carbonato de sodio (Na₂CO₃) 0.20 M con un clorhídrico HCl (ac), de acuerdo a la siguiente ecuación química: Na₂CO₃ (ac) + 2 HCl (ac) → 2 NaCl (ac) + CO₂ (g) + H₂O (l) ¿Qué volumen de CO₂ (g) se obtiene a una presión de 2.0 atm y una temperatura de 25.0 °C? 4 Una de las formas en que el hierro se encuentra en la naturaleza es Fe₂O₃ (s). Fe (s) + ½ O₂ (g) → FeO (s) ΔH = -271.90 kJ/mol. 2FeO(s) + ½ O₂ (g) → Fe₂O₃ (s) ΔH = -278.36 kJ/m (a) A partir de los dos datos anteriores, estima el ΔH° para la reacción: 3/2 O₂ (g) + 2 Fe (s) → Fe₂O₃ (s) ΔH = -278.36 kJ/m (b) ¿Cuánto calor se desprenderá por cada tonelada de Fe₂O₃ (s) producido a partir de sus elen 5 La constante de acidez del ácido acético (CH₃COOH) es Ka = 1.8×10 ⁻⁵ . (a) ¿Es un ácido débil o fuerte? (b) Escribe la reacción de disociación del ácido acético es 0.100 M ¿cuáles son las concentra especies al equilibrio (CH₃COOH), (CH₃COO¬), (H₃O¬)? (d) ¿Cuál es el pH de la solución? 6 Para la siguiente reacción: $MnO₄^{-}_{(ac)} + C₂O₄^{-}_{(ac)} $	No está permitido el uso del teléfono celula Sólo podrán abandonar el salón una vez qu Escriba cada procedimiento realizado en l	e haya	an entregad	o el exan	en.	su respuesta se considerará	
Protones 5 Neutrones 6 16 16 Electrones 5 18 Carga Neta -3 -3 2 La malaquita es el principal mineral del cobre su color es verde brillante y su fórmula es C (a) Encuentra el porcentaje en masa de cobre en la malaquita. (b) ¿Cuántos gramos de cobre pueden obtenerse a partir de 500.0 gramos de malaquita? 3 Reaccionan 40.0 ml de una solución de carbonato de sodio (Na₂CO₃) 0.20 M con un clorhídrico HCl (ac), de acuerdo a la siguiente ecuación química: Na₂CO₃ (ac) + 2 HCl (ac) → 2 NaCl (ac) + CO₂ (g) + H₂O (l) ¿Qué volumen de CO₂ (g) se obtiene a una presión de 2.0 atm y una temperatura de 25.0 °C? 4 Una de las formas en que el hierro se encuentra en la naturaleza es Fe₂O₃ (s). Fe (s) + ½ O₂ (g) → FeO (s) ΔH = -271.90 kJ/mol. 2FeO(s) + ½ O₂ (g) → Fe₂O₃ (s) ΔH = -278.36 kJ/m (a) A partir de los dos datos anteriores, estima el ΔH° para la reacción: 3/2 O₂ (g) + 2 Fe (s) → Fe₂O₃ (s) ΔH = -278.36 kJ/m (b) ¿Cuánto calor se desprenderá por cada tonelada de Fe₂O₃ (s) producido a partir de sus elen 5 La constante de acidez del ácido acético (CH₃COOH) es Ka = 1.8×10 ⁻⁵ . (a) ¿Es un ácido débil o fuerte? (b) Escribe la reacción de disociación del ácido acético es 0.100 M ¿cuáles son las concentra especies al equilibrio (CH₃COOH), (CH₃COO¬), (H₃O¬)? (d) ¿Cuál es el pH de la solución? 6 Para la siguiente reacción: $MnO₄^{-}_{(ac)} + C₂O₄^{-}_{(ac)} $	Completa los datos de la tabla siguiente:					(1.0 puntos)	
Protones 5 Neutrones 6 16 16 Electrones 5 18 Carga Neta -3 -3 2 La malaquita es el principal mineral del cobre su color es verde brillante y su fórmula es C (a) Encuentra el porcentaje en masa de cobre en la malaquita. (b) ¿Cuántos gramos de cobre pueden obtenerse a partir de 500.0 gramos de malaquita? 3 Reaccionan 40.0 ml de una solución de carbonato de sodio (Na₂CO₃) 0.20 M con un clorhídrico HCl (ac), de acuerdo a la siguiente ecuación química: Na₂CO₃ (ac) + 2 HCl (ac) → 2 NaCl (ac) + CO₂ (g) + H₂O (l) ¿Qué volumen de CO₂ (g) se obtiene a una presión de 2.0 atm y una temperatura de 25.0 °C? 4 Una de las formas en que el hierro se encuentra en la naturaleza es Fe₂O₃ (s). Fe (s) + ½ O₂ (g) → FeO (s) ΔH = -271.90 kJ/mol. 2FeO(s) + ½ O₂ (g) → Fe₂O₃ (s) ΔH = -278.36 kJ/m (a) A partir de los dos datos anteriores, estima el ΔH° para la reacción: 3/2 O₂ (g) + 2 Fe (s) → Fe₂O₃ (s) ΔH = -278.36 kJ/m (b) ¿Cuánto calor se desprenderá por cada tonelada de Fe₂O₃ (s) producido a partir de sus elen 5 La constante de acidez del ácido acético (CH₃COOH) es Ka = 1.8×10 ⁻⁵ . (a) ¿Es un ácido débil o fuerte? (b) Escribe la reacción de disociación del ácido acético es 0.100 M ¿cuáles son las concentra especies al equilibrio (CH₃COOH), (CH₃COO¬), (H₃O¬)? (d) ¿Cuál es el pH de la solución? 6 Para la siguiente reacción: $MnO₄^{-}_{(ac)} + C₂O₄^{-}_{(ac)} $	Símbolo	В	$^{54}_{26}$ Fe ²⁺	P			
Electrones 5 18 Carga Neta -3 2 La malaquita es el principal mineral del cobre su color es verde brillante y su fórmula es C (a) Encuentra el porcentaje en masa de cobre en la malaquita. (b) ¿Cuántos gramos de cobre pueden obtenerse a partir de 500.0 gramos de malaquita? 3 Reaccionan 40.0 ml de una solución de carbonato de sodio (Na ₂ CO ₃) 0.20 M con un clorhídrico HCl (ac), de acuerdo a la siguiente ecuación química: Na ₂ CO _{3 (ac)} + 2 HCl (ac) → 2 NaCl (ac) + CO _{2 (g)} + H ₂ O (l) ¿Qué volumen de CO _{2 (g)} se obtiene a una presión de 2.0 atm y una temperatura de 25.0 °C? 4 Una de las formas en que el hierro se encuentra en la naturaleza es Fe ₂ O _{3(s)} . Fe (s) + ½ O _{2 (g)} → FeO (s) ΔH = -271.90 kJ/mol. 2FeO(s) + ½ O _{2 (g)} → Fe ₂ O _{3 (s)} ΔH = -278.36 kJ/m (a) A partir de los dos datos anteriores, estima el ΔH° para la reacción: 3/2 O _{2 (g)} + 2 Fe (s) → Fe ₂ O _{3 (s)} (b) ¿Cuánto calor se desprenderá por cada tonelada de Fe ₂ O _{3(s)} producido a partir de sus elen 5 La constante de acidez del ácido acético (CH ₃ COOH) es K _a = 1.8×10 ⁻⁵ . (a) ¿Es un ácido débil o fuerte? (b) Escribe la reacción de disociación del ácido acético es 0.100 M ¿cuáles son las concentra especies al equilibrio (CH ₃ COOH), (CH ₃ COO⁻), (H ₃ O⁺)? (d) ¿Cuál es el pH de la solución? 6 Para la siguiente reacción: MnO ₄ (ac) + C ₂ O ₄ (ac) ≒ Mn ²⁺ (ac) + CO _{2 (g)} (a) Determina los estados de oxidación de los elementos participantes. (b) ¿Cuál elemento se oxida y cuál elemento se reduce?	Protones	5	20				
2 La malaquita es el principal mineral del cobre su color es verde brillante y su fórmula es C (a) Encuentra el porcentaje en masa de cobre en la malaquita. (b) ¿Cuántos gramos de cobre pueden obtenerse a partir de 500.0 gramos de malaquita? 3 Reaccionan 40.0 ml de una solución de carbonato de sodio (Na₂CO₃) 0.20 M con un clorhídrico HCl (ac), de acuerdo a la siguiente ecuación química: Na₂CO₃ (ac) + 2 HCl (ac) → 2 NaCl (ac) + CO₂ (g) + H₂O (l) ¿Qué volumen de CO₂ (g) se obtiene a una presión de 2.0 atm y una temperatura de 25.0 °C? 4 Una de las formas en que el hierro se encuentra en la naturaleza es Fe₂O₃(s). Fe (s) + ½ O₂ (g) → FeO₃	Neutrones	6		16			
2 La malaquita es el principal mineral del cobre su color es verde brillante y su fórmula es C (a) Encuentra el porcentaje en masa de cobre en la malaquita. (b) ¿Cuántos gramos de cobre pueden obtenerse a partir de 500.0 gramos de malaquita? 3 Reaccionan 40.0 ml de una solución de carbonato de sodio (Na₂CO₃) 0.20 M con un clorhídrico HCl (ac), de acuerdo a la siguiente ecuación química: Na₂CO₃ (ac) + 2 HCl (ac) → 2 NaCl (ac) + CO₂ (g) + H₂O (l) ¿Qué volumen de CO₂ (g) se obtiene a una presión de 2.0 atm y una temperatura de 25.0°C? 4 Una de las formas en que el hierro se encuentra en la naturaleza es Fe₂O₃(s). Fe (s) + ½ O₂ (g) → FeO (s) ΔH = -271.90 kJ/mol. 2FeO(s) + ½ O₂ (g) → Fe₂O₃ (s) ΔH = -278.36 kJ/m (a) A partir de los dos datos anteriores, estima el ΔH° para la reacción: 3/2 O₂ (g) + 2 Fe (s) → Fe₂O₃ (s) (b) ¿Cuánto calor se desprenderá por cada tonelada de Fe₂O₃(s) producido a partir de sus elen 5 La constante de acidez del ácido acético (CH₃COOH) es Ka = 1.8×10⁻⁵. (a) ¿Es un ácido débil o fuerte? (b) Escribe la reacción de disociación del ácido acético. (c) Si la concentración de una solución de ácido acético es 0.100 M ¿cuáles son las concentra especies al equilibrio (CH₃COOH), (CH₃COO¬), (H₃O¬)? (d) ¿Cuál es el pH de la solución? 6 Para la siguiente reacción: MnO₄⁻ (ac) + C₂O₄²⁻ (ac) ≒ Mn²⁺ (ac) + CO₂ (g) (a) Determina los estados de oxidación de los elementos participantes. (b) ¿Cuál elemento se oxida y cuál elemento se reduce?	Electrones	5		18			
 (a) Encuentra el porcentaje en masa de cobre en la malaquita. (b) ¿Cuántos gramos de cobre pueden obtenerse a partir de 500.0 gramos de malaquita? 3 Reaccionan 40.0 ml de una solución de carbonato de sodio (Na₂CO₃) 0.20 M con un clorhídrico HCl (ac), de acuerdo a la siguiente ecuación química: Na₂CO₃ (ac) + 2 HCl (ac) → 2 NaCl (ac) + CO₂ (g) + H₂O (t) ¿Qué volumen de CO₂ (g) se obtiene a una presión de 2.0 atm y una temperatura de 25.0 °C? 4 Una de las formas en que el hierro se encuentra en la naturaleza es Fe₂O_{3(s)}. Fe (s) + ½ O₂ (g) → FeO (s)	Carga Neta			-3			
clorhídrico $HCl_{(ac)}$, de acuerdo a la siguiente ecuación química: $Na_2CO_{3(ac)} + 2HCl_{(ac)} \longrightarrow 2NaCl_{(ac)} + CO_{2(g)} + H_2O_{(1)}$ ¿Qué volumen de $CO_{2(g)}$ se obtiene a una presión de 2.0 atm y una temperatura de $25.0^{\circ}C$? 4 Una de las formas en que el hierro se encuentra en la naturaleza es $Fe_2O_{3(s)}$. $Fe_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow FeO_{(s)} \qquad \Delta H = -271.90kJ/mol.$ $2FeO_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow Fe_2O_{3(s)} \qquad \Delta H = -278.36kJ/mol.$ $2FeO_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow Fe_2O_{3(s)} \qquad \Delta H = -278.36kJ/mol.$ (a) A partir de los dos datos anteriores, estima el ΔH° para la reacción: $3/2O_{2(g)} + 2Fe_{(s)} \longrightarrow Fe_2O_{3(s)}$ (b) ¿Cuánto calor se desprenderá por cada tonelada de $Fe_2O_{3(s)}$ producido a partir de sus elen 5 La constante de acidez del ácido acético (CH_3COOH) es $K_a = 1.8 \times 10^{-5}$. (a) ¿Es un ácido débil o fuerte? (b) Escribe la reacción de disociación del ácido acético. (c) Si la concentración de una solución de ácido acético es $0.100M$ ¿cuáles son las concentrates especies al equilibrio (CH_3COOH), (CH_3COO^-), (CH_3O^+)? (d) ¿Cuál es el pH de la solución? $MnO_4^{-}_{(ac)} + C_2O_4^{2-}_{(ac)} \leftrightarrows Mn^{2+}_{(ac)} + CO_{2(g)}$ (a) Determina los estados de oxidación de los elementos participantes. (b) ¿Cuál elemento se oxida y cuál elemento se reduce?	Encuentra el porcentaje en masa de cobre en	la mala	aquita.	_		Cu ₂ CO ₅ H ₂ . (1.0 puntos)	
 4 Una de las formas en que el hierro se encuentra en la naturaleza es Fe₂O_{3(s)}. Fe (s) + ½ O_{2 (g)} → FeO (s) ΔH = - 271.90 kJ/mol. 2FeO_(s) + ½ O_{2 (g)} → Fe₂O_{3 (s)} ΔH = - 278.36 kJ/m (a) A partir de los dos datos anteriores, estima el ΔH° para la reacción: 3/2 O_{2 (g)} + 2 Fe (s) → Fe₂O_{3 (s)} (b) ¿Cuánto calor se desprenderá por cada tonelada de Fe₂O_{3(s)} producido a partir de sus elen 5 La constante de acidez del ácido acético (CH₃COOH) es K_a = 1.8×10⁻⁵. (a) ¿Es un ácido débil o fuerte? (b) Escribe la reacción de disociación del ácido acético. (c) Si la concentración de una solución de ácido acético es 0.100 M ¿cuáles son las concentra especies al equilibrio (CH₃COOH), (CH₃COO⁻), (H₃O⁺)? (d) ¿Cuál es el pH de la solución? 6 Para la siguiente reacción: MnO₄ (ac) + C₂O₄² (ac)	nídrico HCl $_{(ac)}$, de acuerdo a la siguiente ecua $_{(ac)}$ + 2 HCl $_{(ac)}$ + 2 HCl	ción qu l _(ac) —	ıímica: → 2 NaC	$\Omega_{(ac)} + C$	$O_{2 (g)} + H_2 O_{(1)}$		
 5 La constante de acidez del ácido acético (CH₃COOH) es K_a = 1.8×10⁻⁵. (a) ¿Es un ácido débil o fuerte? (b) Escribe la reacción de disociación del ácido acético. (c) Si la concentración de una solución de ácido acético es 0.100 M ¿cuáles son las concentra especies al equilibrio (CH₃COOH), (CH₃COO⁻), (H₃O⁺)? (d) ¿Cuál es el pH de la solución? 6 Para la siguiente reacción: MnO₄ (ac) + C₂O₄²⁻ (ac)	$Fe_{(s)} + \frac{1}{2} O_{2 (g)} - \frac{1}{2} FeO_{(s)} + \frac{1}{2} O_{2 (g)} - \frac{1}{2} O_{2 (g)} - \frac{1}{2} O_{2 (g)} - \frac{1}{2} O_{2 (g)} O_{2 (g)} O_{2 (g)} - \frac{1}{2} O_{2 (g)} O_{2 $		eO _(s) O _{3 (s)} eara la reacc 2 Fe _(s)	$\Delta H = -\frac{\Delta}{\Delta}H$ ión: $\Rightarrow Fe_2O_3$	271.90 kJ/mol. = - 278.36 kJ/r		
 (a) ¿Es un ácido débil o fuerte? (b) Escribe la reacción de disociación del ácido acético. (c) Si la concentración de una solución de ácido acético es 0.100 M ¿cuáles son las concentra especies al equilibrio (CH₃COOH), (CH₃COO⁻), (H₃O⁺)? (d) ¿Cuál es el pH de la solución? 6 Para la siguiente reacción: MnO₄⁻(ac) + C₂O₄²⁻(ac) ≒ Mn²+(ac) + CO₂(g) (a) Determina los estados de oxidación de los elementos participantes. (b) ¿Cuál elemento se oxida y cuál elemento se reduce? 	¿Cuanto calor se desprendera por cada tonela	da de i	$e_2O_{3(s)}$ prod	iucido a j	artir de sus elei	(2.0 puntos)	
6 Para la siguiente reacción: MnO ₄ ⁻ (ac) + C ₂ O ₄ ²⁻ (ac) Mn ²⁺ (ac) + CO ₂ (g) (a) Determina los estados de oxidación de los elementos participantes. (b) ¿Cuál elemento se oxida y cuál elemento se reduce?	¿Es un ácido débil o fuerte? Escribe la reacción de disociación del ácido a Si la concentración de una solución de ácido a cies al equilibrio (CH ₃ COOH), (CH ₃ COO ⁻), (cético. acético	es 0.100 M		on las concenti	raciones de todas las	
$MnO_4^{(ac)} + C_2O_4^{2-}_{(ac)} \leftrightarrows Mn^{2+}_{(ac)} + CO_2_{(g)}$ (a) Determina los estados de oxidación de los elementos participantes. (b) ¿Cuál elemento se oxida y cuál elemento se reduce?	¿Cuál es el pH de la solución?					(2.0 puntos)	
(d) Balancea la reacción redox en solución ácida DATOS: R: 0.082 L atm/mol K	MnO ₄ -(ac) + C Determina los estados de oxidación de los ele ¿Cuál elemento se oxida y cuál elemento se r ¿Cuál es el agente reductor y cuál el agente o: Balancea la reacción redox en solución ácida	mento educe? xidante	s participan		O _{2 (g)}	(2.0 puntos)	

C: 12.01

H: 1.008

Cu: 63.55

O: 16.00

Fe: 55.85

(1 tonelada equivale a 1000 kg)

Masas Molares (g/mol):