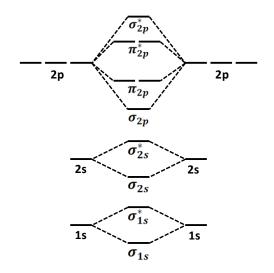


Segundo Examen Departamental Estructura de la Materia. Trimestre 17-0


donar el salón una vez que hayas procedimientos que utilices para rmaciones siguientes son ve ace de HCl es covalente polouede formar sólidos covalerma un enlace iónico entre un ructura de Lewis permite pr	responder. rdaderas (V) o falsas (F). ar. ntes. n metal y un no metal. redecir si una molécula es polar. temperaturas de ebullición bajas.	(((((((((((((((((((()))	(1 punto)
ace de HCl es covalente polouede formar sólidos covalente ma un enlace iónico entre un ructura de Lewis permite proyoría de los metales tienen es	ar. ntes. n metal y un no metal. redecir si una molécula es polar. temperaturas de ebullición bajas.	(((((((((((((((((((())	(1 punto)
puede formar sólidos covalenta un enlace iónico entre un ructura de Lewis permite proyoría de los metales tienen e	ntes. n metal y un no metal. redecir si una molécula es polar. temperaturas de ebullición bajas.	(((((((((((((((((((())	
ma un enlace iónico entre un ructura de Lewis permite pr yoría de los metales tienen t	n metal y un no metal. redecir si una molécula es polar. temperaturas de ebullición bajas.	(()))	
ructura de Lewis permite pr yoría de los metales tienen t	redecir si una molécula es polar. temperaturas de ebullición bajas.	())	
yoría de los metales tienen t	temperaturas de ebullición bajas.	()	
		()	
N] [–] llena la tabla (estructura				
	as de Lewis y cargas formales).			(3 puntos)
Estructura de Lewis 1	Estructura de Lewis 2		Estructi	ıra de Lewis 3
	ás probable =	ás probable =	ás probable =	ás probable =

- **3.-** Para cada una de las moléculas siguientes: CO₂, ClO₂⁻, SF₄, CH₄, indica: (2 puntos)
- (a) el arreglo de los pares electrónicos,
- (${f b}$) la geometría molecular y
- (${\bf c}$) la hibridación del átomo central.

4.- En la tabla siguiente escribe en los espacios vacíos las configuraciones electrónicas, el orden de enlace y las propiedades magnéticas de las especies de oxígeno que se indican.

Usa el orden de energía de los orbitales moleculares mostrado en el diagrama.

(2 puntos)

Especie	Configuración electrónica	Orden de enlace	Propiedad magnética
O ₂ ²⁻			
$\mathbf{O_2}^{1-}$			
\mathbf{O}_2			
${\mathbf O_2}^{1+}$			

5 I	ndica el ti	po de fuer	za intermolec	cular <i>más im</i>	<i>portante</i> p	ara explica	r los sig	guientes	hechos ex	perimentales:
-----	-------------	------------	---------------	---------------------	-------------------	-------------	-----------	----------	-----------	---------------

- (a) que la energía de solvatación en agua sea mayor para MgCl₂ que para NaCl.
- (**b**) que el H₂O hierva a mayor temperatura que el H₂S.
- (\mathbf{c}) que el N_2 se pueda licuar.
- (**d**) que el CBr₄ tenga una temperatura de ebullición de 90°C y el CH₃Br de 3.5°C.
- (e) que el C₆H₅OH tenga una temperatura de ebullición de 181.7°C y el C₆H₆ de 80°C.