

Primer Examen Departamental Transformaciones Químicas. Trimestre 24-0

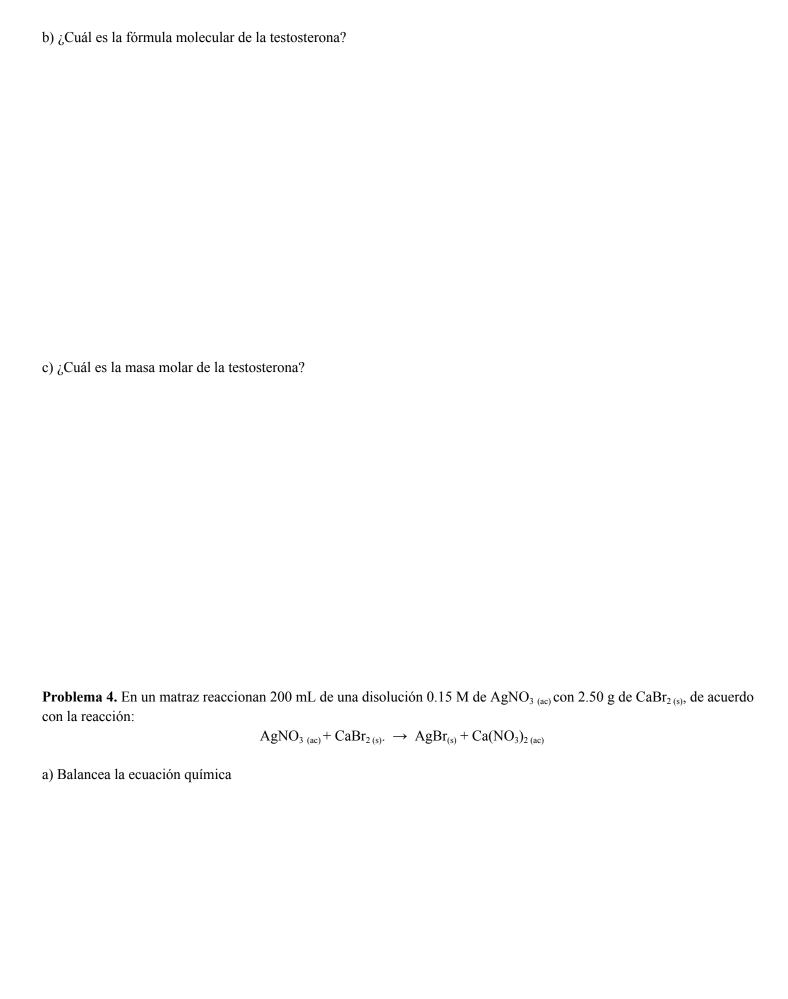
Nombre:		Matrícula:	
_	_		_

Instrucciones:

- No está permitido el uso del teléfono celular ni de reproductores de música o video.
- Sólo podrán abandonar el salón una vez que hayan entregado el examen.
- Si en alguna de las preguntas en la que se te pida justificar la respuesta, ésta no se incluye, se considerará incorrecta.

(2 puntos cada problema = 10)

Problema 1. Completa la siguiente tabla


Isótopo	Número de protones	Número de neutrones	Número de electrones
³ ₂ He			
¹⁵ ₇ N			
³³ ₁₆ S ²⁻			
⁶³ ₂₉ Cu ¹⁺			

Problema 2. Una cuchara de plata pura (Ag) pesa 37 g, calcula:

a) El número de moles de átomos de Ag.

b) El número de átomos de plata.

c) El volumen de la cuchara, considerando que la densidad de la plata es 10.5 g/cm ³ .
Problema 3. La testosterona, la hormona sexual masculina, se compone de carbono, hidrógeno y oxígeno. Contiene 79.12% en masa de carbono y 9.79% en masa de hidrógeno. Cada molécula contiene dos átomos de oxígeno. a) ¿Cuál es la fórmula empírica de la testosterona?

b) Determina el reactivo limitante.	. Escribe tu procedimiento.	

c) ¿Cuántos gramos de $AgBr_{(s)}$ se obtuvieron?	
d) ¿Cuántos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	
d) ¿Cuantos gramos quedaron sin reaccionar del reactivo en exceso?	

Problema 5. Una muestra de 1.42 g de helio (gas) y una cantidad de oxígeno (O ₂) (gas) no conocida se mezclan en un
matraz a temperatura ambiente, 25 °C. La presión parcial del helio en el matraz es de 42.5 mmHg, y la presión parcial del
oxígeno es de 180 mmHg.
a) Calcula la fracción molar del oxígeno.

b) Calcula la masa del oxígeno en el recipiente

DATOS: R = 0.082 L atm/mol K $N_A = 6.02 \times 10^{23} partículas/mol$

	_	· A						
Elemento	Br	N	C	Н	О	He	Ca	Ag
Masa molar (g/mol)	79.90	14.01	12.01	1.01	16.00	4.00	40.08	107.87